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ABSTRACT

We show that detecting real roots for honestly n-variate
(n + 2)-nomials (with integer exponents and coefficients)
can be done in time polynomial in the sparse encoding for
any fixed n. The best previous complexity bounds were
exponential in the sparse encoding, even for n fixed. We
then give a characterization of those functions k(n) such
that the complexity of detecting real roots for n-variate
(n + k(n))-nomials transitions from P to NP-hardness as
n −→ ∞. Our proofs follow in large part from a new com-
plexity threshold for deciding the vanishing of A-discriminants
of n-variate (n+k(n))-nomials. Diophantine approximation,
through linear forms in logarithms, also arises as a key tool.

Categories and Subject Descriptors

F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—Computations
on polynomials; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Nonnumerical Algorithms and Prob-
lems—Geometrical problems and Computations

General Terms

Algorithms

Keywords

sparse, real, feasibility, polynomial-time, discriminant cham-
ber, linear forms in logarithms
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1. INTRODUCTION AND MAIN RESULTS
Consider real feasibility: the problem of deciding the exis-
tence of real roots for systems of polynomial equations. In
addition to having numerous practical applications (see, e.g.,
[BG-V03]), real feasibility is an important motivation be-
hind effectivity estimates for the Real Nullstellensatz (e.g.,
[Ste74, Sch00]), the quantitative study of sums of squares
[RS09, BHPR09], and their connection to semi-definite pro-
gramming and optimization [Par03, Las07]. In particular,
real solving of sparse polynomial systems arises in concrete
applications such as satellite orbit mechanics [AM09], and
real solving clearly involves real feasibility as an initial step.
We are thus inspired to derive new algorithms and complex-
ity lower bounds for real feasibility, in the refined setting of
sparse polynomials.

To state our results, let us first clarify some basic notation
concerning sparse polynomials and some well-known com-
plexity classes. Recall that R∗ is the multiplicative group of
nonzero elements in any ring R.

Definition 1.1. When aj ∈ R
n, the notations aj =

(a1,j , . . . , an,j), xaj = x
a1,j

1 · · ·x
an,j
n , and x = (x1, . . . , xn)

will be understood. If f(x) :=
Pm

j=1 cix
aj where cj ∈ R

∗

for all j, and the aj are pair-wise distinct, then we call f
a (real) nnn-variate mmm-nomial, and we define Supp(f) :=
{a1, . . . , am} to be the support of f . We also let Fn,m

denote the set of all n-variate ⌊m⌋-nomials within Z[x1, . . . , xn].
Finally, for any m ≥ n + 1, we let F∗

n,m ⊆ Fn,m denote
the subset consisting of those f with Supp(f) not contained
in any (n − 1)-flat. We also call any f ∈F∗

n,m an honest
nnn-variate mmm-nomial (or honestly nnn-variate). ⋄

For example, 1+7x2
1x2x

7
3x

3
4−43x198

1 x99
2 x693

3 x297
4 is a 4-variate

trinomial with support contained in a line segment, but it
has a real root x ∈ R

4 iff the honestly univariate trinomial
1 + 7y1 − 43y99

1 has a real root y1 ∈ R. More generally,
via a monomial change of variables, it will be natural to
restrict to F∗

n,n+k (with k≥1) to study the role of sparsity
in algorithmic complexity over the real numbers.

We will work with some well-known complexity classes
from the classical Turing model of computation (see, e.g.,
[Pap95].) In particular, our underlying notion of input size
is clarified in Definition 2.1 of Section 2.1 below, and il-
lustrated in Example 1.4, immediately following our first
main theorem. So for now, let us just recall the basic inclu-
sions NC1 ⊆P⊆NP⊆PSPACE. While it is known that
NC1 6= PSPACE the properness of each of the remaining
inclusions above is a famous open problem.



1.1 Sparse Real Feasibility and A-Discriminant
Complexity

Definition 1.2. Let R+ denote the positive real num-
bers and let FEASR (resp. FEAS+) denote the problem
of deciding whether an arbitrary system of equations from
S

n∈N
Z[x1, . . . , xn] has a real root (resp. a root with all co-

ordinates positive). Also, for any collection F of tuples cho-
sen from

S

k,n∈N
(Z[x1, . . . , xn])k, we let FEASR(F) (resp.

FEAS+(F)) denote the natural restriction of FEASR (resp.
FEAS+) to inputs in F. ⋄

It has been known since the 1980s that FEASR∈PSPACE
[Can88], and an NP-hardness lower bound was certainly
known earlier. However, no sharper bounds in terms of spar-
sity were known earlier in the Turing model until our first
main theorem.

Theorem 1.3. Let Z+(f) denote the zero set of f in R
n
+.

Then:

0. FEAS+

`
S

n∈N
F∗

n,n+1

´

and FEASR

`
S

n∈N
F∗

n,n+1

´

are in NC1. In particular, when f ∈ F∗
n,n+1, Z+(f)

is either empty or diffeotopic1 to R
n−1
+ , with each case

actually occuring.

1. For any fixed n, FEAS+(F∗
n,n+2) and FEASR(F∗

n,n+2)
are in P.

2. For any fixed ε>0, both FEAS+

 

S

n∈N , 0<ε′≤ε

F∗

n,n+nε′

!

and FEASR

 

S

n∈N , 0<ε′≤ε

F∗

n,n+nε′

!

are NP-hard.

The recent paper [PRT09] proves, in the context of opti-
mizing n-variate (n + 2)-nomials, that sharper algorithmic
complexity bounds hold when we instead work in the BSS
model over R (thus counting arithmetic operations instead
of bit operations). The latter paper also details how the
results here can be extended to real exponents.

Example 1.4. A very special case of Assertion (1) of
Theorem 1.3 implies that one can decide — for any nonzero
c1, . . . , c5∈Z and D∈N — whether

c1 + c2x
999
1 + c3x

73
1 x19

3 + c4x
27D
2 + c5x

74
1 xD

2 x3

has a root in R
3, using a number of bit operations polyno-

mial in
log(D) + log [(|c1| + 1) · · · (|c5| + 1)].

The best previous results (e.g., via the critical points method,
infinitesimals, and rational univariate reduction, as detailed
in [BPR06]) would yield a bound polynomial in
D + log [(|c1| + 1) · · · (|c5| + 1)] instead. ⋄

We thus see that for sparse polynomials, large degree can
be far less of a complexity bottleneck over R than over C.
Theorem 1.3 is proved in Section 3.2 below. The underlying
techniques include A-discriminants (a.k.a. sparse discrimi-
nants) (cf. Section 2.3), Viro’s Theorem from toric geome-
try (see, e.g., [GKZ94, Thm. 5.6]), and effective estimates
on linear forms in logarithms [Nes03].

In particular, for any collection FA of n-variate m-nomials
with support A, there is a polynomial ∆A in the coefficients
(ci) called the AAA-discriminant. Its real zero set partitions

1See Definition 2.9 of Section 2.3 below.

FA into chambers (connected components of the comple-
ment) on which the zero set of an f ∈ FA has constant
topological type. A toric deformation argument employing
Viro’s Theorem enables us to decide whether a given cham-
ber consists of f having empty or non-empty Z+(f). For
any A⊂Z

n of cardinality n + 2 (in sufficiently general posi-
tion), there is then a compact formula for the A-discriminant
that enables us to pick out which chamber contains a given
f : one simply computes the sign of a linear combination of
logarithms. Our resulting algorithms are thus quite imple-
mentable, requiring only fast approximation of logarithms
and some basic triangulation combinatorics for Supp(f). (A
preliminary Matlab implementation can be downloaded from
www.math.tamu.edu/~rojas/cktposfeas.m .)

Example 1.5. Consider A :={(0, 0, 0), (999, 0, 0), (73, 0, 19),
(0, 2009, 0), (74, 293, 1)}, which gives us the family of trivari-
ate pentanomials
FA :=

˘

c1 + c2x
999
1 + c3x

73
1 x19

3 + c4x
2009
2 + c5x

74
1 x293

2 x3

˛

˛ ci ∈R
∗
¯

.
Suppose further that f ∈FA is an element satisfying c1, c2, c3,
c4 > 0 and c5 < 0. It then turns out via Lemma 2.12 (cf.
Section 2.4 below) that Z+(f) has a degeneracy iff the AAA-
discriminant, ∆A(c) :=

3813282938132829 c27886408
1 c2677997

2 c2006991
3 c5561433

4

−2788640827886408267799726779972006991200699155614335561433c38132829
5

vanishes. In fact, via the techniques underlying Theorem
1.3, Z+(f) is either empty, a point, or isotopic to a 2-sphere,
according as ∆A(c) is positive, zero, or negative. Note in
particular that determining the sign of ∆A(c) is equivalent
to determining the sign of

38132829 log(38132829) + 27886408 log(c1) + 2677997 log(c2) + 2006991 log(c3) + 5561433 log(c4)

−27886408 log(27886408) − 2677997 log(2677997)− 2006991 log(2006991) − 5561433 log(5561433)− 38132829 log(c5). ⋄

While we review A-discriminants in Section 2.3 below, it
is important to observe now how the computational com-
plexity of A-discriminants closely parallels that of FEASR:
compare Theorem 1.3 above with Theorem 1.7 below.

Definition 1.6. Let ADISC= (resp. ADISC>) denote
the problem of deciding whether ∆A(f) vanishes (resp. de-
termining the sign of ∆A(f)) for an input polynomial f
with integer coefficients, where A = Supp(f). Finally, let
ADISC=(F) (resp. ADISC>(F)) be the natural restric-
tion of ADISC= (resp. ADISC>) to inputs in some family
F. ⋄

Theorem 1.7.

1. ADISC=

„

S

n∈N

F∗
n,n+2

«

∈ P and, for any fixed n,

ADISC>(F∗
n,n+2)∈P.

2. For any fixed ε>0, both ADISC=

0

B

@

S

n∈N

0<ε′≤ε

F∗

n,n+nε′

1

C

A
and

ADISC>

0

B

@

S

n∈N

0<ε′≤ε

F∗

n,n+nε′

1

C

A
are NP-hard.

Theorem 1.7 is proved in Section 3.1, after the development
of some necessary theory in Section 2 below.

1.2 Related Work
Earlier work on algorithmic fewnomial theory has

mainly gone in directions other than polynomial-time al-
gorithms. For example, Gabrielov and Vorobjov have given
singly exponential time algorithms for weak stratifications of
semi-Pfaffian sets [GV04] — data from which one can com-
pute homology groups of real zero sets of a class of functions



more general than sparse polynomials. Our approach thus
highlights a subproblem where faster and simpler algorithms
are possible.

Focussing on feasibility, other than the elementary results
FEASR(F1,1) ∈ NC0 and FEASR(F1,2) ∈ NC0, there ap-
pear to have been no earlier complexity upper bounds of the
form FEASR (F1,m)∈P, or even FEASR (F1,m)∈NP, for
m≥3. (With the exception of [RY05], algorithmic work on
univariate real polynomials has focussed on algorithms that
are quasi-linear in the degree. See, e.g., [LM01].) Echoing
the parallels between FEASR and ADISC>

provided by Theorems 1.3 and 1.7, both FEASR (F1,4)
?
∈P

and ADISC>(F1,4)
?
∈P are open problems.

As for earlier complexity lower bounds for FEASR in
terms of sparsity, we are unaware of any. Indeed, it is not
even known whether FEASR(Z[x1, . . . , xn]) is NP-hard for
some fixed n. Also, complexity lower bounds for the vanish-
ing of discriminants of n-variate (n + k(n))-nomials (with k
a slowly growing function of n) appear to be new. However,
recent work shows that the geometry of discriminants cham-
bers can be quite intricate already for f ∈F∗

3,3+3 [DRRS07].
Also, it was known even earlier that deciding the vanish-
ing of sparse discriminants of univariate m-nomials (with
m unbounded) is already NP-hard with respect to random-
ized reductions [KS99]. Considering Theorems 1.3 and 1.7,
one may thus be inclined to conjecture that FEASR(Z[x1])
is NP-hard. Curiously, over a different family of complete
fields (the ppp-adic rationals), one can already prove that de-
tecting roots for univariate m-nomials (with m unbounded)
is NP-hard, with respect to randomized reductions [IRR07].
Relative to the more efficient SLP-encoding, Peter Bür-
gisser found a short and elegant proof that FEASR(Z[x1])
is NP-hard (see [Per08] for an alternative proof).

2. BACKGROUND AND ANCILLARY

RESULTS
After recalling a basic complexity construction, we will

present some tools for dealing with n-variate (n+1)-nomials,
and then move on to n-variate (n + k)-nomials with k≥2.

2.1 A Key Reduction
To measure the complexity of our algorithms, let us fix

the following definitions for input size.

Definition 2.1. For any a∈Z, we define its size, size(a),
to be 1 + log(1 + |a|). More generally, we define the size of
a matrix U = [ui,j ] ∈ Z

m×n to be
P

i,j size(ui,j). Also, for

any f(x) =
Pm

i=1 cix
ai ∈ Z[x1, . . . , xn], we define size(f) to

be
Pm

i=1[size(ci) + size(ai)]. Finally, for F = (f1, . . . , fk) ∈

(Z[x1, . . . , xn])k, we define size(F )=
Pk

i=1 size(fi). ⋄

A key construction we will use later in our NP-hardness
proofs is a refinement of an old trick for embedding Boolean
satisfiability (3CNFSAT specifically [Pap95]) into
real/complex satisfiability.

Proposition 2.2. Given any 3CNFSAT instance B(X)
with n variables, N clauses, and N ≥1 + n

4
, let WB denote

(({1} × P
1
C) ∪ (P1

C × {1}))4N−n. Then there is an
(8N − n) × (8N − n) polynomial system FB with the
following properties:

1. B(X) is satisfiable iff FB has a root in
{1, 2}n × WB.

2. FB has no more than 33N − 4n monomial terms,
size(FB) = O(N), and every root of FB in
(P1

C)8N−n lies in {1, 2}n × WB and is degenerate.

Also, if we define tM (z1, . . . , zM ) to be
1 + zM+1

1 + · · · + zM+1
M − (M + 1)z1 · · · zM , then

3. tM is nonnegative on R
M
+ , with a unique positive root

at (1, . . . , 1) that happens to be the only degenerate root
of tM in C

M .

4. If ε > 0, f ∈ F∗
n,n+k, and M :=

l

k1/ε
m

, then f(x) +

tM (z)∈F∗
η,η+ηδ for η=n+M and some positive δ≤ε.

In particular, size(f(x) + tM (z))=O
“

size(f)1/ε
”

. �

The seemingly mysterious polynomial tM defined above will
be useful later when we will need to decrease the difference
between the number of terms and variables in certain poly-
nomials.

2.2 Efficient Linear Algebra on Exponents
A simple and useful change of variables is to use

monomials in new variables.

Definition 2.3. For any ring R, let Rm×n denote the set
of m × n matrices with entries in R. For any M = [mij ]∈
R

n×n and y = (y1, . . . , yn), we define the formal expression
yM :=(y

m1,1

1 · · · y
mn,1
n , . . . , y

m1,n

1 · · · y
mn,n
n ). We call the sub-

stitution x :=yM a monomial change of variables. Also,
for any z := (z1, . . . , zn), we let xz := (x1z1, . . . , xnzn). Fi-
nally, let GLn(Z) denote the group of all matrices in Z

n×n

with determinant ±1 (the set of unimodular matrices). ⋄

Proposition 2.4. (See, e.g., [LRW03, Prop. 2].) For
any U, V ∈ R

n×n, we have the formal identity (xy)UV =
(xU )V (yU )V . Also, if detU 6= 0, then the function
eU (x) := xU is an analytic automorphism of R

n
+, and pre-

serves smooth points and singular points of positive zero sets
of analytic functions. Moreover, if det U >0, then eU in fact
induces a diffeotopy on any positive zero set of an analytic
function. Finally, U ∈ GLn(R) implies that e−1

U (Rn
+) = R

n
+

and that eU maps distinct open orthants of R
n to distinct

open orthants of R
n. �

Proposition 2.4, with minor variations, has been
observed in many earlier works (see, e.g., [LRW03]). Per-
haps the only new ingredient is the observation on diffeotopy,
which follows easily from the fact that GL

+
n (R) (the set of all

n×n real matrices with positive determinant) is a connected
Lie group.

Recall that the affine span of a point set A⊂R
n, AffA,

is the set of real linear combinations
P

a∈A caa satisfying
P

a∈A ca =0. Via the now well-studied algorithms for Smith
normal form [Sto98], we can easily derive the following facts.
(In what follows, we use # for set cardinality and ei for the
ith standard basis vector of R

n.)

Lemma 2.5. For any f ∈ F∗
n,n+1 we can compute ℓ ∈

{0, . . . , n} within NC1 and γ ∈ R+ such that f̄(x) := γ +
x1 + · · · + xℓ − xℓ+1 − · · · − xn satisfies: (1) either f or −f
has exactly ℓ + 1 positive coefficients, and (2) Z+

`

f̄
´

and
Z+(f) are diffeotopic. �

Corollary 2.6. Suppose f ∈ F∗
n,n+1 and Supp(f) =

{a1, . . . , an+1}⊂R
n. Then



1. f has a root in R
n
+ ⇐⇒ not all the coefficients of f

have the same sign. In particular, Z+(f) is diffeotopic
to either R

n−1
+ or ∅.

2. If all the coefficients of f have the same sign, then f
has a root in (R∗)n ⇐⇒ there are indices i ∈ [n] and
j, j′∈ [n + 1] with ai,j − ai,j′ odd. �

2.3 Combinatorics and Topology of Certain A-
Discriminants

The connection between topology of discriminant comple-
ments and computational complexity dates back to the late
1970s, having been observed relative to (a) the membership
problem for semi-algebraic sets [DL79] and (b) the approx-
imation of roots of univariate polynomials [Sma87]. Our
goal here is a precise connection between FEASR and A-
discriminant complements. (See also [DRRS07] for further
results in this direction.)

Definition 2.7. [GKZ94, Ch. 1 & 9–11] Given any A=
{a1, . . . , am}⊂Z

n of cardinality m and c1, . . . , cm ∈C
∗, we

define ∇A ⊂ P
m−1
C

— the A-discriminant
variety — to be the closure of the set of all
[c1 : · · · : cm]∈P

m−1
C

such that f(x)=
Pm

i=1 cix
ai has a de-

generate root in C
n. We then define ∆A∈Z[c1, . . . , cm]\{0}

— the AAA-discriminant — to be the unique (up to sign) ir-
reducible defining polynomial of ∇A. Also, when ∇A has
complex codimension at least 2, we set ∆A to the constant
1. For convenience, we will sometimes write ∆A(f) in place
of ∆A(c1, . . . , cm). ⋄

To prove our results, it will actually suffice to deal with a
small subclass of A-discriminants.

Definition 2.8. We call A ⊂ R
n a (non-degenerate)

circuit2 iff A is affinely dependent, but every proper sub-
set of A is affinely independent. Also, we say that A is a
degenerate circuit iff A contains a point a and a proper
subset B such that a∈B, A \ a is affinely independent, and
B is a non-degenerate circuit. ⋄

For instance, both and are circuits, but is a
degenerate circuit. In general, for any degenerate circuit A,
the subset B named above is always unique.

The relevance of A-discriminants to m-nomial zero sets
can be summarized as follows.

Definition 2.9. Following the notation of Definition 2.7,
we call any connected component of P

m−1
R

\ (∇A ∪ {[x1 :
· · · : xm] | x1 · · ·xm =0}) a (real) A-discriminant cham-
ber. Also, given any subsets X, Y ⊆ R

n
+, we say that they

are isotopic (resp. diffeotopic) iff there is a continuous
(resp. differentiable) function H : [0, 1] × X −→ R

n
+ such

that H(t, ·) is a homeomorphism (resp. diffeomorphism) for
all t∈ [0, 1], H(0, ·) is the identity on X, and H(1, X)=Y .
Finally, for any A⊂R

n of cardinality m, let FA denote the
set of all n-variate m-nomials with support A. ⋄

Remark 2.10. Note that when A has cardinality m, we
may naturally identify elements of P

m−1
C

(resp. P
m−1
R

) with
equivalence classes determined by nonzero complex (resp.
real) multiples of elements of FA. ⋄

2This terminology comes from matroid theory and has noth-
ing to do with circuits from complexity theory.

The topology of toric real zero sets is known to be constant
on discriminant chambers (see, e.g., [GKZ94, Ch. 11, Sec.
5A, Prop. 5.2, pg. 382]). However, we will need a refinement
of this fact to positive zero sets: When A is in sufficiently
general position — a non-degenerate circuit, for instance
— one can derive the following statement via basic toric
geometry (see, e.g., Lemma 15 of [LRW03]).

Lemma 2.11. Following the notation above, suppose A⊂
R

n is such that the minimum of any linear form on A is
minimized at no more than n+1 points. Also let C be any A-
discriminant chamber. Then f, g∈C =⇒ Z+(f) and Z+(g)
are diffeotopic. �

There is then a very compact description for ∇A when A
is a circuit.

Lemma 2.12. Suppose A={a1, . . . , an+2}⊂Z
n is a non-

degenerate circuit, f is a polynomial with support A, Â is
the (n+1)×(n+2) matrix whose jth column is {1}×aj , Âj is

the submatrix of Â obtained by deleting the jth column, and
bj := (−1)j det Âj/β where β = gcd(det Â1, . . . , det Ân+2).
Then:

1. ∆(c1, . . . , cn+2) is, up to a multiple by a nonzero mono-

mial term,
n+2
Q

i=1

“

ci

bi

”bi

− 1. Also, (b1, . . . , bn+2) can be

computed in P.

2. For all [c1 : · · · : cn+2]∈P
n+1
R

we have the equivalence
n+2
Q

i=1

(sign(bici)ci/bi)
sign(bici)bi = 1 for some

[c1 : · · · : cn+2] ∈ P
n+1
R

with sign(c1b1) = · · ·

= sign(cn+2bn+2) ⇐⇒ Z+

`Pn+2
i=1 cix

ai
´

contains a
degenerate point ζ. In particular, Z+(f) has at most
one degenerate point.

3. A has exactly two triangulations: one with simplices
{Conv(A \ {bi}) | sign(bi) > 0}, and the other with
simplices {Conv(A \ {bi}) | sign(bi) < 0}. Moreover,
the preceding description also holds when A is a de-
generate circuit.

Proof of Lemma 2.12: With the exception of the assertion
on complexity, Lemma 2.12 follows directly from [GKZ94,
Prop. 1.8, Pg. 274], [GKZ94, Prop. 1.2, pg. 217], and the
discussion following up to the end of Section B on page 218 of
[GKZ94]. In particular, the factor β takes into account that
A may not affinely generate Z

n, but is always the integral
affine image of an A′ that is. So the sign condition arises
simply from a binomial system (with odd determinant) that
ζ must satisfy.

The assertion on the complexity of computing (b1, . . . , bn+2)
follows immediately upon consider the Smith factorization
and employing Csanky’s famous parallel algorithm for the
determinant [Csa76]. Indeed, were it not for the gcd com-
putation for β, we could instead assert an NC2 complexity
bound. �

2.4 Complexity of Circuit Discriminants and
Linear Forms in Logarithms

Theorem 1.7 is a central tool behind the upper bounds
and lower bounds of Theorem 1.3, and is precisely where
diophantine approximation enters our scenery. To wit, the
proof of Assertion (1) of Theorem 1.7 makes use of the fol-
lowing powerful result.



Nesterenko-Matveev Theorem. [Nes03, Thm. 2.1, Pg.
55] For any integers c1, α1, . . . , cN , αN with αi ≥ 2 for all
i, define Λ(c, α) := c1 log(α1) + · · · + cN log(αN ). Then

Λ(c, α) 6=0 =⇒ log
˛

˛

˛

1
Λ(c,α)

˛

˛

˛ is bounded above by

2.9(N + 2)9/2(2e)2N+6(2 + log maxj |cj |)
N
Q

j=1

log |αj |. �

Assertion (1) of Theorem 1.7 will follow easily from the
two algorithms we state below, once we prove their correct-
ness and verify their efficiency. However, we will first need
to recall the concept of a gcd-free basis. In essence, a gcd-
free basis is nearly as powerful as factorization into primes,
but is far easier to compute.

Definition 2.13. [BS96, Sec. 8.4] For any subset {α1, . . . , αN}
⊂ N, a gcd-free basis for {α1, . . . , αN} is a pair of sets
`

{γi}
η
i=1, {eij}(i,j)∈[N]×[η]

´

such that (1) gcd(γi, γj) = 1 for

all i 6=j, and (2) αi =
Qη

j=1 γ
eij

j for all i. ⋄

Algorithm 2.14.
Input: Integers α1, u1, . . . , αM , uM and β1, v1, . . . , βN , vN .
Output: A true declaration as to whether αu1

1 · · ·αuM
M =

βv1

1 · · ·βvN
N .

Description:

0. If
QM

i=1(sign αi)
ui mod 2 6=

QN
i=1(sign βi)

vi mod 2 then
output “They are not equal.” and STOP.

1. Replace the αi and βi by their absolute values and then
construct a gcd-free basis ({γi}

η
i=1, {eij}(i,j)∈[M+N]×[η])

for {α1, . . . , αM , β1, . . . , βN}.

2. If
PM

i=1 eijui =
PM+N

i=M+1 eijvi for all j∈ [η] then output
“They are equal.” and STOP.

3. Output “They are not equal.”

Algorithm 2.15.
Input: Positive integers α1, u1, . . . , αM , uM and β1, v1,
. . . , βN , vN with αi, βi≥2 for all i.
Output: The sign of αu1

1 · · ·αuM
M − βv1

1 · · ·βvN
N .

Description:

0. Check via Algorithm 2.14 whether αu1

1 · · ·αuM
M =βv1

1 · · ·βvN
N .

If so, output “They are equal.” and STOP.

1. Let U :=max{u1, . . . , uM , v1, . . . , vN}, and
E := 2.9

log 2
(2e)2M+2N+6(1 + log U)

×

„

M
Q

i=1

log |αi|

«„

N
Q

i=1

log |βi|

«

.

2. For all i ∈ [M ] (resp. i ∈ [N ]), let Ai (resp. Bi) be a
rational number agreeing with log αi (resp. log βi) in
its first 2 + E + log2 M (resp. 2 + E + log2 N) leading
bits.3

3. Output the sign of

„

M
P

i=1

uiAi

«

−

„

N
P

i=1

viBi

«

and STOP.

Lemma 2.16. Algorithms 2.14 and 2.15 are both correct.
Moreover, following the preceding notation, Algorithms 2.14
and 2.15 run within a number of bit operations asymptoti-
cally linear in, respectively,

3For definiteness, let us use Arithmetic-Geometric Mean It-
eration as in [Ber03] to find these approximations.

„

M
P

i=1

(1 + log(ui) log(αi))
2

«

+

„

N
P

i=1

(1 + log(vi) log(βi))
2

«

and

(M + N)(30)M+NL(log U)

„

M
Q

i=1

L(log(αi))

«„

N
Q

i=1

L(log(βi))

«

,

where L(x) :=x log2(x) log log(x). �

That Algorithm 2.14 is correct and runs in the time stated
follows immediately from [BS96, Thm. 4.8.7, Sec. 4.8] and
the naive complexity bounds for integer multiplication. The
remainder of Lemma 2.16 then follows routinely from the
Nesterenko-Matveev Theorem and the refined bit complex-
ity estimates for fast multiplication of [BS96, Table 3.1, pg.
43].

2.5 Positive Feasibility for Circuits
For a real polynomial supported on a non-degenerate cir-

cuit, there are just two ways it can fail to have a positive
root: a simple way and a subtle way. This is summarized
below. Recall that the Newton polytope of f is sim-
ply Newt(f) :=Conv(Supp(f)), where Conv(S) denotes the
convex hull (smallest convex set) containing S.

Theorem 2.17. Suppose f(x) =
Pn+2

i=1 cix
ai ∈ F∗

n,n+2,
Supp(f) is a non-degenerate circuit, and b is the vector from
Lemma 2.12. Then Z+(f) is empty iff one of the following
conditions holds:
1. All the ci have the same sign.
2. Newt(f) is an n-simplex and, assuming aj′ is the unique

element of A lying in the interior of Newt(f),
we have −sign(cj′)=sign(ci) for all i 6=j′ and
Qn+2

i=1

“

sign(bj′cj′)
ci

bi

”sign(bj′ cj′ )bi

>1.

Proof of Theorem 2.17: First note that Condition (1)
implies that f maintains the same (non-zero) sign through-
out R

n
+. So Condition (1) trivially implies that Z+(f) = ∅,

and we may assume henceforth that not all the coefficients
of f have the same sign.

Now, if Newt(f) is not a simplex, then every point of
A is a vertex of Newt(f) and thus, independent of the tri-
angulation, any Viro diagram for A must be non-empty.
Since there are only two discriminant chambers (by Lemma
2.12), and thus just two possible Viro diagrams, one can then
show that Z+(f) must be non-empty, assuming ∆A(f) 6=0.
Lemma 2.12 also tells us that Z+(f) must be non-empty if
∆A(f)=0. So we may assume henceforth that Newt(f) is a
simplex and that ∆A(f) 6=0.

Continuing our focus on Condition (2), note that if the
sign equalities from Condition (2) fail, then there must exist
coefficients ci and ci′ of opposite sign such that ai and ai′

vertices of Newt(f). So, again, independent of the trian-
gulation, any Viro diagram for A must be non-empty and
thus (just as in the preceding paragraph) Z+(f) must again
be non-empty. So we may assume henceforth that the sign
equalities from Condition (2) hold.

At this point, it is clear that we need only show that (un-
der our current assumptions) Z+(f) = ∅ ⇐⇒ the discrimi-
nant inequality from Condition (2) holds. Toward this end,
observe that the lifting that assigns aj′ 7→ 1 and ai 7→ 0 for
all i 6=j′ induces the unique triangulation of A consisting of
a single simplex. In particular, the underlying Viro diagram
is empty, due to the sign equalities. So by Viro’s Theorem,
Z+(f) is empty for |cj′ | sufficiently small. By Lemmata 2.11
and 2.12, this topology persists for |cj′ | just small enough to



enforce the discriminant sign stated in Condition (2), so we
are done. �

Positive feasibility for polynomials supported on degen-
erate circuits can then essentially be reduced to the non-
degenerate circuit case in some lower dimension. An addi-
tional twist arises from the fact that the zero sets of polyno-
mials supported on degenerate circuits are, up to a monomial
change of variables, the graphs of polynomials supported on
non-degenerate circuits.

Theorem 2.18. Suppose f(x)=
Pn+2

i=1 cix
ai ∈F∗

n,n+2 has
support A⊂R

n that is a degenerate circuit with non-degenerate
subcircuit B = {a1, . . . , aj′}, and b is the vector defined in
Lemma 2.12 (ignoring the non-degeneracy assumption for
A). Then, when not all the coefficients of f have the same
sign, Z+(f) is empty iff both the following conditions hold:
a. Conv(B) is a (j′ − 2)-simplex and, permuting indices so

that aj′ is the unique element of B lying in the relative
interior of Conv(B), we have −sign(cj′) = sign(ci) for
all i 6=j′.

b.
Qj′

i=1

“

sign(bj′cj′ )
ci

bi

”sign(bj′ cj′ )bi

≥1.

Sketch of Proof of Theorem 2.18: Similar to Lemma 2.5
we can easily find a monomial change of variables (and mul-
tiply by a suitable monomial term) so that f̄(x) :=xvf(xM )
is of the form
c1 + c2x

u1

1 + · · · + cj′−1x
uj′−2

j′−2 + cj′x
α + cj′+1x

uj′−1

j′−1 + · · · + cn+2x
un
n ,

where u1, . . . , un ∈N and α∈N
j′−2 × {0}n−j′+2. In particu-

lar, defining f̄B(x)= c1 + c2x
u1

1 + · · · + cj′−1x
uj′−2

j′−2 + cj′x
α,

it is clear that Z+(f̄) is nothing more than the intersection

of the graph of f̄B (which is analytic on R
j′−2
+ ) with an or-

thant. So Z+

`

f̄
´

is smooth and thus, by Proposition 2.4, we

obtain that Z+(f) is diffeotopic to Z+

`

f̄
´

. It thus suffices

to prove our theorem for f̄ . Note also that the conditions on
Z+(f) allegedly characterizing Z+(f)= ∅ are preserved un-
der monomial multiples and monomial changes of variables.
The remainder of the proof is then a case by case analysis,
depending on whether Z+

`

f̄
´

consists of 0, 1, or ≥2 points.
�

3. THE PROOFS OF OUR MAIN RESULTS:

THEOREMS 1.7 AND 1.3
We go in increasing order of proof length.

3.1 Proving Theorem 1.7
Assertion (1): First note that any input f must have sup-
port A = {a1, . . . , an+2} equal to either a degenerate cir-
cuit or a non-degenerate circuit. Recalling Assertion (1) of
Lemma 2.12, observe then that the vector b :=(b1, . . . , bn+2)
has a zero coordinate iff A is a degenerate circuit, and b
can be computed in time polynomial in size(A). If A is a
degenerate circuit then (following easily from the definition)
∆A must be identically 1, thus leaving Assertion (1) of our
present theorem trivially true. So let us assume henceforth
that A is a non-degenerate circuit, and that cj is the coeffi-
cient of xaj in f for all j.

Via Assertion (1) of Lemma 2.12 once again, Assertion
(1) of Theorem 1.7 follows routinely from the complexity
bounds from Lemma 2.16. In particular, the latter lemma
tells us that the bit complexity of ADISC=, for input coef-
ficients (c1, . . . , cn+2), is polynomial in

Pn+2
i=1 log(cibi) (fol-

lowing the notation of Lemma 2.12); and the same is true

for ADISC> provided n is fixed. The classical Hadamard
inequality then tells us that size(bi)=O(n log(n maxj,k{ajk})).
So the complexity of ADISC= is indeed polynomial in size(f);
and the same holds for ADISC> when n is fixed. �

Assertion (2): We will construct an explicit reduction of

3CNFSAT to ADISC=

 

S

n∈N , 0<ε′≤ε

F∗

n,n+nε′

!

. In

particular, to any 3CNFSAT instance B(X) with N clauses
and n variables with N ≥ n/3, let us first consider FB =
(f1, . . . , f8N−n) — the associated (8N −n)× (8N −n) poly-
nomial system from Proposition 2.2 of Section 2.1. (By re-
naming variables, it is easy to see that a polynomial-time
algorithm for 3CNFSAT in the special case N ≥ n/3 im-
plies 3CNFSAT∈P.)

Let us then set M :=
l

(17N − 2n + 2)1/ε
m

and define the

single polynomial fB to be
f1 + λ1f2 + · · · + λ8N−n−1f8N−n + λ8N−ntM (z1, . . . , zM ).

Letting A be the support of fB , it is then easily checked
(from Proposition 2.2) that A is affinely independent and
fB is in F∗

16N−2n+M,N′ for some N ′≤33N − 4n + M + 2.
By the Cayley Trick [GKZ94, Prop. 1.7, pp. 274] we

then obtain that ∆A(fB)=0 iff
(⋆) FB has a degenerate root in (P1

C)2N−n and tM has
a degenerate root in (C∗)M .

(Since Newt(tM ) is a simplex, it is easily checked that tM

has no complex degenerate roots at infinity.) By Proposition
2.2, the degenerate roots of FB are exactly {1, 2}n × WB,
and tM has a unique degenerate root by construction. So
(⋆) holds iff B(X) has a satisfying assignment. We have
thus reduced 3CNFSAT to detecting the vanishing of a
particular A-discriminant.

To conclude, observe that the number of terms of fB is
only slightly larger than its number of variables, thanks
to Proposition 2.2. In particular, size(fB) = O(size(B)1/ε)
and fB ∈

S

n∈N
F∗

n,n+nδ for some δ ∈ (0, ε]. Clearly then,

ADISC=

 

S

n∈N , 0<ε′≤ε

F∗

n,n+nε′

!

∈ P =⇒ P = NP, thus

proving our first desired NP-hardness lower bound.
The NP-hardness of our remaining problem, being a sub-

case of a problem now shown to be NP-hard, then follows
immediately. �

3.2 Proving Theorem 1.3
Assertion (2): We will give an explicit reduction of 3CNFSAT

to FEAS+

 

S

n∈N , 0<ε′≤ε

F∗

n,n+nε′

!

. Attaining such a reduc-

tion will require little effort, thanks to our earlier reduction
used to prove Assertion (2) of Theorem 1.7.

In particular, for any 3CNFSAT instance B with N
clauses and n variables with N ≥n/3, let us recall the sys-
tem FB =(f1, . . . , f8N−n) from Proposition 2.2. Let us then

define M to be
l

(42N − n + 2)1/ε
m

and define gB(x, z) to be

f2
1 (x) + · · · + f2

4N (x) + tM (z1, . . . , zM ). It is then easily
checked that fB ∈ F∗

n+M,N′ for some N ′≤42N + M + 2.
Moreover, B has a satisfying assignment iff gB has a
positive root. (Indeed, any root of gB clearly lies in
{1, 2}n × {1}M .) We have thus reduced 3CNFSAT to a
special case of FEAS+.

Now observe that the number of terms of gB is only slightly
larger than its number of variables, thanks to Proposition

2.2. In particular, size(gB) = O
“

size(B)1/ε
”

and gB is in



S

n∈N
F∗

n,n+nδ for some δ ∈ (0, ε]. Clearly then,

FEAS+

 

S

n∈N , 0<ε′≤ε

F∗

n,n+nε′

!

∈ P =⇒ P = NP, thus

proving one of our desired NP-hardness lower bounds.
The NP-hardness of our remaining problem can be proved

by employing our preceding argument almost verbatim. The
only difference is that we instead use the polynomial
hB(x, z) := f2

1 (x) + · · · + f2
4N (x) + tM (z2

1 , . . . , z2
M ), and

observe that tM (z2
1 , . . . , z2

M ) is nonnegative on all of R
n. So

we are done. �

Assertion (0): Our topological assertion follows immedi-
ately from Lemma 2.5 and Corollary 2.6.

To obtain our algorithmic assertions, simply note that by
Assertion (1) of Corollary 2.6, detecting positive roots for
f reduces to checking whether all the coefficients have the
same sign. This can clearly be done by n sign evaluations
and n − 1 comparisons, doable in logarithmic parallel time.
So the inclusion involving FEAS+ is proved.

Let us now show that we can detect roots in (R∗)n within
NC1: Employing our algorithm from the last paragraph,
we can clearly assume the signs of the coefficients of f are
all identical (for otherwise, we would have detected a root in
R

n
+ and finished). So then, by Assertion (2) of Corollary 2.6,

we can simply do a parity check (trivially doable in NC1)
of the entries of [a2 − a1, . . . , an+1 − a1].

To conclude, we simply observe that our algorithm for
detecting roots in (R∗)n trivially extends to root detection
in R

n: Any root of f in R
n must lie in some coordinate

subspace L of minimal positive dimension. So, on L, the
honest n-variate (n + 1)-nomial f will restrict to an f ′ ∈
F∗

n′,n′+1 with n′ ≤ n and support a subset of the columns
of a submatrix of A. So then, we must check whether (a)
all the coefficients of f ′ have the same sign or (if not), (b)
a submatrix of [a2 − a1, . . . , an+1 − a1] has an odd entry.
In other words, f has a root in R

n ⇐⇒ f has a root in
(R∗)n ∪ {O}. Since checking whether f vanishes at O is
the same as checking whether f is missing a constant term,
checking for roots in R

n is thus also in NC1. �

Remark 3.1. Note that checking whether a given f ∈
Fn,n+1 lies in F∗

n,n+1 can be done within NC2: one sim-
ply finds d = dim Supp(f) in NC2 by computing the rank
of the matrix whose columns are a2 − a1, . . . , am − a1 (via
the parallel algorithm of Csanky [Csa76]), and then checks
whether d=n. ⋄

Assertion (1): The algorithm we use to prove FEAS+(F∗
n,n+2)

∈P for fixed n is described just below. Note also that once
we have FEAS+(F∗

n,n+2) ∈ P for fixed n, it easily follows
that FEASR(F∗

n,n+2) ∈ P: The polynomial obtained from
an f ∈F∗

n,n+2 by setting any non-empty subset of its vari-
ables to 0 clearly lies in F∗

n′,n′+2 for some n′ <n (modulo a
permutation of variables). Thus, since we can apply changes
of variables like xi 7→ −xi in P, and since there are exactly
3n sequences of the form (ε1, . . . , εn) with εi∈{0,±1} for all
i, it thus clearly suffices to show that FEAS+(F∗

n,n+2)∈P
for fixed n.

We thus need only prove correctness, and a suitable com-
plexity bound, for the following algorithm:

Algorithm 3.2.
Input: A coefficient vector c := (c1, . . . , cn+2) and a
(possibly degenerate) circuit A={a1, . . . , an+2} of cardinal-
ity n + 2.

Output: A true declaration as to whether Z+(f) is empty
or not, where f(x) :=

Pn+2
i=1 cix

ai.
Description:

1. If all the ci have the same sign then output “Z+(f)=∅”
and STOP.

2. Let b = (b1, . . . , bn+2) ∈ Z
n be the vector obtained by

applying Lemma 2.12 to A. If b or −b has a unique
negative coordinate bj′ , and cj′ is the unique negative
coordinate of c or −c, then do the following:

(a) Replace b by −sign(bj′)b, replace c by −sign(cj′)c,
and then reorder b, c, and A by the same
permutation so that bj′ <0 and [bi >0 iff i<j′].

(b) If j′ <n + 2 and

(−bj′)
−bj′

Qj′−1
i=1 cbi

i =(−cj′)
−bj′

Qj′−1
i=1 bbi

i

(the latter decided via Algorithm 2.14) then
output “Z+(f)=∅” and STOP.

(c) Decide via Algorithm 2.15 whether

(−bj′)
−bj′

Qj′−1
i=1 cbi

i

?
>(−c′j)

−bj′
Qj′−1

i=1 bbi
i .

If so, output “Z+(f)=∅” and STOP.

3. Output “Z+(f) is non-empty!” and STOP.

The correctness of Algorithm 3.2 follows directly from The-
orems 2.18 and 2.17. In particular, note that bi is simply the
signed volume of Conv(A\{ai}). So the geometric interpre-
tation b or −b having a unique negative coordinate is that
the convex hull of the unique non-degenerate subcircuit of A
is a simplex, with aj′ lying in its relative interior. Similarly,
the geometric interpretation of j′ <n+2 is that A is a degen-
erate circuit. Finally, the product comparisons from Steps
(b) and (c) simply decide the product inequalities stated in
Theorem 2.17 and Theorem 2.18.

So now we need only bound complexity, and this follows
immediately from Lemma 2.16 (assuming we use Algorithm
2.14 for Step (b)). �

It is worth noting that we need to compute the sign of a
linear combination of logarithms only when the unique non-
degenerate subcircuit B of A is a simplex, and all “vertex”
coefficients have sign opposite from the“internal”coefficient.
Also, just as in Remark 3.1, checking whether a given f ∈
Fn,n+2 lies in F∗

n,n+2 can be done within NC2 by computing
d = dim Supp(f) efficiently. Moreover, from our preceding
proof, we see that deciding whether a circuit is degenerate
(and extracting B from A when A is degenerate) can be
done in NC2 as well, since we can set β=1 if we only want
the signs of (b1, . . . , bn+2).
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